

# Smart Eco-Mall System

"A Sustainable Approach to Reduce Electricity Wastage in Shopping Malls"

IDEA BY

MD.SAHARIAR HOSEN

Pursuing Computer Science & Engineering, Varendra University, Rajshahi.

**Problem:** In the bustling retail environments of shopping malls, a silent issue often goes unnoticed: the excessive wastage of electricity. This problem manifests itself in two primary areas: air conditioning and lighting, which together account for a disproportionate amount of energy consumption in these commercial hubs.

Air conditioning systems in malls are typically designed for peak capacity and operate continuously, irrespective of the actual need or occupancy levels. This "one-size-fits-all" approach fails to consider the variability in foot traffic and external temperatures, leading to a constant and often unnecessary drain on power resources. The result is a substantial amount of electricity used to cool spaces that may not require it, or when the mall is at low capacity, such as during early hours or closing times.

Lighting, another significant consumer of electricity in malls, presents a similar challenge. Traditional lighting systems are frequently left on for extended periods, even in areas that are temporarily unoccupied or sufficiently illuminated by natural daylight. These systems lack the adaptability to modulate intensity or switch off when not needed, resulting in an ongoing and unoptimized consumption of electricity.

Furthermore, the strategic placement and type of lighting fixtures often do not align with the most energy-efficient practices. Excessive use of high-intensity bulbs in areas that could be served equally well by lower-intensity options or the absence of task-specific lighting solutions also contribute to the overarching problem of energy wastage.

The culmination of these issues is not just operational inefficiency but also an increased environmental burden. The carbon footprint of shopping malls is unduly amplified by such wasteful practices, counteracting efforts to move towards a more sustainable and environmentally conscious society.

In essence, the problem of electricity wastage in shopping malls is twofold, encompassing both the mismanagement of air conditioning systems and the imprudent use of lighting. These inefficiencies underscore the need for a more thoughtful approach to energy consumption, one that aligns with modern sustainability standards and economic prudence. Addressing these concerns is not merely a matter of reducing utility bills; it is about taking responsible action towards a more sustainable future in the retail sector.

**Idea:** The “Smart Eco-Mall System” is an innovative concept designed to drastically reduce electricity wastage in shopping malls by intelligently managing and optimizing the use of air conditioning and lighting systems.

## Procedures:

### 1. Intelligent Climate Control:

- Installation of smart thermostats and climate sensors throughout the mall to monitor and adapt to varying temperatures and occupancy levels.
- Zone-based cooling and heating, where HVAC systems operate independently in different areas, allowing for energy savings in less populated sections of the mall.

### 2. Automated Lighting Management:

- Transition to energy-efficient LED lighting, coupled with a smart lighting system that adjusts brightness based on time of day and presence detection.
- Incorporation of daylight harvesting techniques where natural light is used to its fullest potential, reducing reliance on artificial lighting.

### 3. Energy Consumption Analytics:

- A central monitoring system that tracks energy usage patterns, providing actionable insights to further reduce wastage.
- Regular reports that analyze peak usage times and suggest adjustments to operations to align with energy-saving goals.

### 4. User Engagement Programs:

- Interactive displays that educate visitors on the mall's energy-saving initiatives and encourage eco-friendly practices.
- Incentives for stores within the mall that meet or exceed energy conservation targets.

### 5. Sustainable Energy Production:

- Implementation of renewable energy sources, such as solar panels, to offset electricity needs.
- Integration with the local power grid to sell back excess energy produced during low-usage periods.

## 6. Flexible Tariff Rate:

- Advocating for variable electricity tariff rates for larger commercial consumers, such as shopping malls, which incentivizes reduced energy consumption during peak hours and rewards off-peak usage with lower rates.
- This flexible pricing structure would encourage malls to adjust their operations to benefit from cost savings during off-peak times, promoting energy conservation

## 7. Usage of Green Energy

- The implementation of solar panels and other renewable energy technologies will supplement the mall's energy requirements, reducing dependence on traditional power sources.

### Operational Strategy:

- ✓ The Smart Eco-Mall System would operate through a network of interconnected devices and sensors that communicate with a central hub.
- ✓ The hub analyzes data from the climate and lighting sensors to make real-time adjustments to energy consumption.
- ✓ Facility managers can use the system's analytics to plan and implement energy-saving measures, schedule maintenance for optimal performance, and predict future energy needs.

### Environmental and Economic Impact:

- ✓ By reducing electricity wastage, the Smart Eco-Mall System would not only lower operational costs for mall owners but also contribute to broader environmental conservation efforts.
- ✓ The reduction in energy consumption would decrease the mall's carbon footprint, supporting global sustainability targets.

This system is poised to set a new standard for energy management in commercial spaces, reflecting a shift towards sustainability in the retail industry.